
     

ANARK COLLABORATE API REFERENCE 
CONTENTS 
General Notes ................................................................................................................................................. 3 

System Permissions .................................................................................................................................... 4 
Publishing a Content Item .............................................................................................................................. 5 

Create a Content Item ................................................................................................................................ 5 
Add a Component to the Content Item ...................................................................................................... 6 
Upload File and Publish .............................................................................................................................. 7 
Get the Job Status ...................................................................................................................................... 9 
Cleanup on Publish Errors .......................................................................................................................... 9 
View URL ................................................................................................................................................... 10 

Content Management .................................................................................................................................. 11 
Delete a Content Item .............................................................................................................................. 11 
Delete a Component ................................................................................................................................ 11 
Get Components....................................................................................................................................... 11 
Get Content Item Metadata ..................................................................................................................... 13 
Edit Content Item Metadata ..................................................................................................................... 14 
Archiving a Content Item .......................................................................................................................... 15 

Downloading a Content Item ....................................................................................................................... 16 
Post the Download Request ..................................................................................................................... 16 
Get the Job Status .................................................................................................................................... 17 
Trigger the Download of the File .............................................................................................................. 17 

Work Management ...................................................................................................................................... 18 
Create or Update a Work Item ................................................................................................................. 18 
Get a Work Item ....................................................................................................................................... 19 

Search Services ............................................................................................................................................. 21 
Content Item ............................................................................................................................................ 22 
Activity ...................................................................................................................................................... 23 
Work Instruction ....................................................................................................................................... 25 
Users ......................................................................................................................................................... 26 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   2 | P a g e  

Groups ...................................................................................................................................................... 28 
Get Tenant Preferences ................................................................................................................................ 29 
Activities ....................................................................................................................................................... 30 

Create an Activity ..................................................................................................................................... 30 
Update an Activity .................................................................................................................................... 31 
Delete an Activity ..................................................................................................................................... 31 
Get an Activity .......................................................................................................................................... 32 
Generate an Activity Report ..................................................................................................................... 35 

User Management ........................................................................................................................................ 37 
Add a User ................................................................................................................................................ 37 
Update a User ........................................................................................................................................... 38 
Delete a User ............................................................................................................................................ 39 
Get a User ................................................................................................................................................. 39 

Authentication .............................................................................................................................................. 41 
Login ......................................................................................................................................................... 41 
Logout ....................................................................................................................................................... 41 
Get Authenticated User ............................................................................................................................ 42 

Integration API Hooks ................................................................................................................................... 45 
Initialize .................................................................................................................................................... 45 
Authenticate an External User ................................................................................................................. 45 
External User Log Out ............................................................................................................................... 46 
External Content Item Access Check ........................................................................................................ 46 
Handle Expired Session ............................................................................................................................ 46 
External Access Check for Search ............................................................................................................. 47 

Content Linking and Embedding................................................................................................................... 48 
Linking Syntax ........................................................................................................................................... 48 
Embedded Syntax ..................................................................................................................................... 48 

Publishing a Data Component ...................................................................................................................... 50 
Structured Data ........................................................................................................................................ 51 
Schema Validation .................................................................................................................................... 53 

Miscellaneous ............................................................................................................................................... 54 
Log a Message .......................................................................................................................................... 54 
  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   3 | P a g e  

GENERAL NOTES 
 

All API calls require authentication and authorization to succeed. Authentication checks that the 
credentials passed with the API correspond to an active system user. Authorization checks that the user 
invoking the API has permission to invoke that specific API.  

 

Authentication 

Basic authentication is recommended; however, cookie authentication is also supported. If using basic 
authentication, base64 encoded user credentials should be passed using the “Authorization” request 
header, with every API request. 

Authorization: Basic username:password  
Ex: Authorization: Basic YWxhZGRpbjpvcGVuc2VzYW1l  

 

To use cookie authentication, a session needs to be established by using the /api/auth/login API. After the 
API calls are done, use /api/auth/logout to logout the user. “mbewebsid” cookie needs to be passed 
during the API request using the Cookie request header. 

 

Authorization 

Authorization checks that the user invoking the API has a specific role permission. Each API requires a 
different role permission and is listed in the API description. It is recommended to create a custom role 
with the required role permission(s) and give that custom role to the user that will be invoking the API. 
Anark Collaborate has built-in roles that may have the required permission.  

  

API Requests and Responses 
Most APIs must be sent with a request body. Request bodies should be sent as JSON objects, unless 
otherwise specified.  

body: { 
    …, 
} 

All APIs will return a status code indicating success or non-success. If any API returns a non-success status 
code, the response body should be an error object with the message property set to the error message. 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   4 | P a g e  

SYSTEM PERMISSIONS 
The following table details each permission required by at least one of the APIs in this document, and 
what default role has this permission. NOTE: These permissions do not over-rule any Access Control 
specifications for given content. 

 

Permission Description Default Roles with Permission 

VIEW-CONTENTITEM Can view published content. Collaborator, Content Author, 
Viewer 

VIEW-ACTIVITY Can view conversations and 
comments in the feed. 

Collaborator, Viewer 

VIEW-WORK-ITEM Can view work items. Viewer, Work Item Author 

VIEW-SEARCH-
CONTENTITEM 

Can search for content. Admin, Collaborator, Content 
Author, Viewer 

VIEW-SEARCH-USER Can search for users. Admin, Collaborator, Viewer 

VIEW-SEARCH-
ACTIVITYLIST 

Can search for activity lists. Admin, Collaborator, Viewer 

VIEW-SEARCH-ACTIVITY Can search for activities. Admin, Collaborator, Viewer 

VIEW-SEARCH-GROUP Can search for Access Control Lists. Admin 

VIEW-SEARCH-
WORKINSTRUCTION 

Can search for work instructions. Viewer 

VIEW-SEARCH-WORK-
ITEM 

Can search/query for work items. Viewer, Work Item Author, Admin 

CREATE-UPDATE-DELETE-
ACTIVITY 

Can manage activity. Collaborator 

CREATE-UPDATE-DELETE-
CONTENTITEM 

Can publish content. Content Author 

CREATE-UPDATE-DELETE-
USER 

Can add and manage users. Admin 

CREATE-UPDATE-DELETE-
WORK-ITEM 

Can add and manage work items. Work Item Author, Admin 

ADMINISTER-
PREFERENCES 

Can manage system preferences. Admin 

 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   5 | P a g e  

PUBLISHING A CONTENT ITEM 
 
To publish a content item to Anark Collaborate: 

1) Create a content item 
2) Add one or more component(s) to the content item. Hierarchy is supported, any components can 

contain children, so components can be added in a tree like structure. 
3) Use the upload API to publish content targeting a specific component in the content item.  

The user who is invoking these APIs should have the “CREATE-UPDATE-DELETE-CONTENTITEM” role 
permission.  

CREATE A CONTENT ITEM 

POST /api/contents 

Creates a content item with metadata (properties). The user who is invoking this API should have 
“CREATE-UPDATE-DELETE-CONTENTITEM” role permission. 

 

Request:  

Property Property Description 

template template id  

name content name 

description 
Optional 

content description 

properties 
Optional 

content properties defined by custom schema  

 
Example request: 

{ 
  "template": "612d6178637aa6009400e8ec", 
  "name": "sample content", 
  "description": "sample description", 
  "properties": { 
    "revision": "A", 
    "version": 3 
  } 
} 

 

If the API call is successful, it will return a status code 200 with the content id and nonce id in the 
response body. 

Response:  

Property Property Description 

contentId content unique identifier 

nonceId content nonce id (this is required for editing 
the content item) 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   6 | P a g e  

Example response: 
{ 
  "contentId": "612d6178637aa6009400e8ec", 
  "nonceId": "612d6178637a16009400f9fd" 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error  

ADD A COMPONENT TO THE CONTENT ITEM 

POST /api/cicomponents 

Adds a component to a content item. The user who is invoking this API should have the “CREATE-UPDATE-
DELETE-CONTENTITEM” role permission. 

 

Request:  

Property Property Description 

content ID of the content to which the component 
should be added 

name Component name 

type Component type - document, model, image, 
video, file, or data. 

parent 
Optional 

ID of the parent component if adding as a 
child. If not specified, adds the component to 
the root 

index  
Optional 

The index at which to insert the component 
relative to sibling components. Indexes are 
“zero” based, meaning if there are 4 existing 
and you create a new component at index 1, 
then the new component will be created in the 
second position. 

visible 
Optional 

Whether or not the component is viewable, 
i.e., can be visualized in a viewer.  If not 
specified, default values will be applied. For 
File type, default is false. For all others, default 
is true. 

 
 
 
Example request: 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   7 | P a g e  

{ 
  “content”: "612d6178637aa6009400e8ec”, 
  “name”: “sample component”, 
  “type”: “document”, 
  “visible”: true 
} 

 

Components can be one of the following types: model (3D), document (PDF), image (JPG, PNG, TIF or 
BMP), video (MP4), file (used for attachments – any file extension other than JS or EXE), or data (JSON). If 
the API call is successful, it will return a status code 200 with the component id in the response body. 

Response:  

Property Property Description 

cicomponentId component id 

Example response: 
{ 
  "cicomponentId": "612d6178637aa6009400e8ec", 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error  

 

UPLOAD FILE AND PUBLISH 

POST /api/upload/file/{contentId} 

Uploads a file and starts the publishing process asynchronously. If a 3D model assembly is being uploaded, 
the user should create a zip file before uploading. “ContentId” in the URL is the unique identifier of the 
content for which file is being uploaded. Request body should be of type multipart/form-data and 
contains the fields as shown in table below. This will overwrite the content if it already exists. 

The user who is invoking this API should have either the “CREATE-UPDATE-DELETE-USERFILE” or “CREATE-
UPDATE-DELETE-ACTIVITYFILE” or “CREATE-UPDATE-DELETE-CONTENTITEM” role permission. 

 

Field Value 

fileData File blob data 

componentId   Component id 

componentType    Component type 

assemblyName 
Optional 

Top level assembly name (required only in the 
case of 3D assembly upload) 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   8 | P a g e  

recipeArgs 
Optional 

Recipe arguments that need to be overridden – 
passed as a string (JSON stringify the array). 

 

If specifying recipe arguments (recipeArgs), each recipe argument should be an object like shown below. 
“actionType”, “optionKey”, “optionValue” are optional fields, but one of them should be specified. 
“replacementOptionValue” is required. 

const recipeArgs = JSON.stringify([{ 
  “optionKey”: “Anark.Core.CadAdapter.Import.Pdf2d.RotateAngle”, 
  “replacementOptionValue”: “Zero” 
}, 
..., 
]); 

Example:  

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW  
----WebKitFormBoundary7MA4YWxkTrZu0gW  
Content-Disposition: form-data; name="fileData"; filename="/C:/upload/testcontent.zip"  
Content-Type: <Content-Type header here>  
(data)  
----WebKitFormBoundary7MA4YWxkTrZu0gW  
Content-Disposition: form-data; name="componentId"  
60465cc59d46470071d4f1d8  
----WebKitFormBoundary7MA4YWxkTrZu0gW  
----WebKitFormBoundary7MA4YWxkTrZu0gW  
Content-Disposition: form-data; name="componentType"  
model 
----WebKitFormBoundary7MA4YWxkTrZu0gW 
----WebKitFormBoundary7MA4YWxkTrZu0gW  
Content-Disposition: form-data; name="assemblyName"  
car.CATProduct 
----WebKitFormBoundary7MA4YWxkTrZu0gW  
----WebKitFormBoundary7MA4YWxkTrZu0gW  
Content-Disposition: form-data; name="recipeArgs"  
'[{"optionKey":"Anark.Core.CadAdapter.Import.Pdf2d.RotateAngle","replacementOptionValue
":"Zero"}]' 
----WebKitFormBoundary7MA4YWxkTrZu0gW  

 

 

If the API call is successful, it will return a status code 200 with the job id in the response body. Jobs 
service status API should be used to poll periodically to get the status of the job. 

 

Response:  

Property Property Description 

jobId job id (used for status updates) 

 
 
 
 
Example response: 

{ 
  "jobId": "xcyuioVB", 
} 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   9 | P a g e  

Response Status Codes:  

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error 

 

 

GET THE JOB STATUS  

GET /api/jobs/{jobId}/status  

“JobId” in the URL is the unique identifier of the job for which status is being queried. 

 

If the API call is successful, it will return a status code 200 with the job status in the response body. If 
there is an error when processing the job, the message property will contain the error message. 

Property Property Description Options 

status job status 'queued | complete | processing | failed | cancelled' 

message 
Optional 

error message  

Example response: 
{ 
  "status": "complete", 
} 

Response Status Codes: 

200 Success  

401 Unauthorized (authentication failed)  

403 Forbidden (user does not have the required role permission) 

404 Not Found (job not found) 

500 Internal Server Error 

 

 

 

 

CLEANUP ON PUBLISH ERRORS 

DELETE /api/contents/{contentId}/publish 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   10 | P a g e  

This needs to be invoked only if either, content item creation or addition of component to a content item, 
succeeded. “ContentId” in the URL is the unique identifier of the content for which publishing resulted in 
an error. 

If there are any errors during the publish API calls, call this API to roll back the changes. It will delete the 
entries from database and files from content store if needed. 

Request:  

Property Property Description 

action action can be ‘post’, ‘append’, or ‘overwrite’ 

componentIds 
Optional 

list of component ids. Ids can be obtained from 
POST /api/cicomponents response body 

Example request: 
{ 
  "action": "post", 
  "componentIds": ["78666ac968841279e86c91df", "7ac40968841279e86c601965"] 
} 

Response Status Codes:  

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error 

 

 

VIEW URL 
 

The URL to view the content item will be of the form shown below. Content ID is returned from the create 
content item API call. 

https://{ANARK_ SERVER}/view/{CONTENTID}/ 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   11 | P a g e  

CONTENT MANAGEMENT 
 

DELETE A CONTENT ITEM 

DELETE /api/contents/{contentId}  

Deletes the content item from the database and content store. “ContentId” in the URL is the unique 
identifier of the content which is being deleted. The user who is invoking this API should have the 
“CREATE-UPDATE-DELETE-CONTENTITEM” role permission. 

 

Response Status Codes:  

204 Success 

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (content item does not exist) 

500 Internal Server Error 

 

DELETE A COMPONENT 

DELETE /api/cicomponents/{cicomponentId}  

Deletes the component from the database and content store. Removes component from the parent 
component. “CIComponentId” in the URL is the unique identifier of the component which is being 
deleted. The user who is invoking this API should have the “CREATE-UPDATE-DELETE-CONTENTITEM” role 
permission. 

 

Response Status Codes:  

204 Success 

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (component does not exist) 

500 Internal Server Error 

 

 

GET COMPONENTS 

GET /api/cicomponents?content={contentId} 

Gets all components of a content item. “ContentId” in the URL is the unique identifier of the content. The 
user who is invoking this API should have the “VIEW-CONTENTITEM” role permission. 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   12 | P a g e  

 

Response is an array of objects with the following properties: 

Property Property Description 

name component name 

type component type 

content content id 

children array of cicomponents with the 
same properties in this table. 

thumbnailUrl a url to a thumbnail 
representing this component 

 
Example response: 

{ 
  "_id": "61e994daa70a386c96478b9c", 
  "name": "sample component", 
  "type": "document", 
  "content": "62141e2f565da10f983a2936", 
  "children": [{ 
    "_id": "62141e2f565da10f983a2942", 
    "children": [{ 
      "_id": "62141e2f565da10f983a2943", 
      "children": [], 
      "name": "component10", 
      "type": "document", 
      "content": "62141e2f565da10f983a2936", 
      "thumbnailUrl": "/content/62141e2f565da10f983a2936/62141e2f565da10f983a2943/thumbnail" 
    }], 
    "name": "component9", 
    "type": "data", 
    "content": "62141e2f565da10f983a2936", 
    "thumbnailUrl": "/content/62141e2f565da10f983a2936/62141e2f565da10f983a2942/thumbnail" 
  }], 
  "thumbnailUrl": "/content/62141e2f565da10f983a2936/61e994daa70a386c96478b9c/thumbnail", 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (content access check failed or role permission check failed)  

500 Internal Server Error 

 

 

 

 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   13 | P a g e  

GET CONTENT ITEM METADATA 

GET /api/contents/{contentId}/properties 

Retrieves the content item metadata. “ContentId” in the URL is the unique identifier of the content for 
which properties need to be retrieved. The user who is invoking this API should have the “VIEW-
CONTENTITEM” role permission.  

If the API call is successful, it will return the following response body with status code 200. 

Property Property Description 

name content name 

description content description 

archived true if content is archived, otherwise false 

creationdate creation timestamp 

lastmoddate last modification timestamp 

lastmodifiedby user id of the user who last modified the 
content 

properties properties defined by custom schema 

deleted true if the content was deleted, otherwise 
false 

 
Example response: 

{ 
  "name": "sample content", 
  "description": "sample description", 
  "archived": false, 
  "creationdate": "2021-04-08T16:37:31.192Z", 
  "lastmoddate": "2021-04-08T16:37:31.192Z", 
  "properties": [ 
    { 
      "revision": "A", 
      "version": 1.0 
    } 
  ], 
  "deleted": false, 
} 

 

Response Status Codes: 

200 Success 

401 Unauthorized (authentication failed)  

403 Forbidden (content access check failed or role permission check failed)  

404 Not Found (content does not exist) 

500 Internal Server Error 

 

GET /api/contents/{contentId}/properties/{propKey} 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   14 | P a g e  

Use this API to retrieve a specific property of content item (name, description, archived, deleted, 
creationdate, lastmoddate, lastmodifiedby, and custom properties). “ContentId” in the URL is the unique 
identifier of the content for which property needs to be retrieved. “PropKey” is the property key name. 
The user who is invoking this API should have the “VIEW-CONTENTITEM” role permission. 

 

If the API call is successful, it will return the following response body with status code 200. 

Property Property Description 

value property value 

 
Example response: 

{ 
  "value": "sample part" 
} 

 

Response Status Codes:  

200 Success 

401 Unauthorized (authentication failed)  

403 Forbidden (content access check failed or role permission check failed)  

404 Not Found (content does not exist) 

500 Internal Server Error 

 

EDIT CONTENT ITEM METADATA 

PUT /api/contents/{contentId}/properties 

Edits the content item metadata. “ContentId” in the URL is the unique identifier of the content for which 
properties needs to be modified. The user who is invoking this API should have the “CREATE-UPDATE-
DELETE-CONTENTITEM” role permission. Request body should contain the content item properties that 
needs to be modified. 

 

Request: 

Property Property Description 

name 
Optional 

content name 

description 
Optional 

content description 

propertyKey 
Optional 

content property(ies) defined by custom 
schema, specified in key-value pairs 

Example request: 
{ 
  "name": "sample name" 
  "description": "sample description" 
  "isLatestVersion": "true" 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   15 | P a g e  

} 

 

Response Status Codes: 

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (content does not exist) 

500 Internal Server Error 

PUT /api/contents/{contentId}/properties/{propKey} 

Use this API to modify a specific property (name, description, and custom properties). “ContentId” in the 
URL is the unique identifier of the content for which property needs to be modified. “PropKey” is the 
property key name. The user who is invoking this API should have the “CREATE-UPDATE-DELETE-
CONTENTITEM” role permission. 

Request body is of type text and will contain the new value for the property.  

Example: 
let xhr = new XMLHttpRequest(); 
xhr.open("PUT", "/api/content/62141e2f565da10f983a2936/properties/description"); 
xhr.send("sample description"); 

Response Status Codes: 

204 Success 

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (content does not exist) 

500 Internal Server Error 

 

ARCHIVING A CONTENT ITEM 

PUT /api/contents/{contentId}/archived 

Archives or unarchives a content item. Archived items remain in the system but cannot be edited. 
“ContentId” in the URL is the unique identifier of the content. The user who is invoking this API should 
have the “CREATE-UPDATE-DELETE-CONTENTITEM” role permission. 

Request body should be JSON with key “value” equal to true or false. If true, the content will be marked 
as archived.  

 

Response Status Codes: 

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   16 | P a g e  

403 Forbidden (role permission check failed)  

404 Not Found (content does not exist) 

500 Internal Server Error 

 

DOWNLOADING A CONTENT ITEM 
 
Components of type document, image, and file can be downloaded. Downloading components of a 
content item is done asynchronously and requires using three API calls as outlined below.  

 

POST THE DOWNLOAD REQUEST 

POST /api/contents/{contentId}/download 

Starts the download request asynchronously. “ContentId” in the URL is the unique identifier of the 
content which needs to be downloaded. Request body will be an array of unique identifiers for the 
components that needs to be downloaded. The user who is invoking this API should have the “VIEW-
CONTENTITEM” role permission.  

 

Request: 

Body Description 
ids: ['60566ac968841279e86c9130',..] component ids to be downloaded 

 
Example request: 

ids: ["78666ac968841279e86c91df", "7ac40968841279e86c601965"] 

 

Response:  

Property Property Description 

jobid job id (used for status updates) 

 
Example response: 

{ 
  "jobid": "xctyuiHJ" 
} 

 

Response Status Codes: 

200 Success  

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (content access check failed, or user does not have the required role permission) 

404 Not Found (no file to download) 

405 Content download is not enabled 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   17 | P a g e  

500 Internal Server Error 

 

GET THE JOB STATUS  

GET /api/jobs/{jobId}/status  

Getting the job status in download is the same API as getting the job status while Publishing a Content 
Item. Please refer to the above API for reference: Get the Job Status 

 

TRIGGER THE DOWNLOAD OF THE FILE 

GET /api/download/file?jobid={jobId}  

When the job status returns “complete,” trigger the download of the file using the above API. If there are 
multiple components, it will be a zip file (download.zip), otherwise it will be a single file. “JobId” in the 
URL is the unique identifier of the job which was returned when posting the download request. 

 

If the API call is successful, it will return a status code 200 with the response body containing the file blob 
data and Content-Disposition response header will be set to “attachment”. 

 

Response Status Codes: 

200 Success  

401 Unauthorized (authentication failed) 

403 Forbidden (content access check failed, or invalid role permission) 

404 Not Found (file to be downloaded, not found) 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   18 | P a g e  

WORK MANAGEMENT 
 

CREATE OR UPDATE A WORK ITEM 

POST /api/work-items 

Creates a work item in the system. The user who invokes this API should have the “CREATE-UPDATE-
DELETE-WORK-ITEM” role permission. 

 

Request: 

Property  Property Description  

  title work item title  
  description work item description  
  type enum: task, issue, review  
  state enum: proposed, in-progress, resolved, completed, removed  

  priority 
  Optional  

enum: low, medium, high   

  dueDate 
  Optional  

date the item is due – serialized in ISO-8601 format  

  activity 
  Optional  

ID of the Activity associated with this work item. Once an activity has 
been assigned, it cannot be reassigned or removed.   

  assignee.item 
  Optional  

ID of the User or Group to which this work item is assigned. Must also 
set the `assignee.modelName`.  

  assignee.modelName 
  Optional  

enum: MBEUser, MBEGroup  
NOTE: this field is required if `assignee.item` is set  

  contents 
  Optional  

Array of content IDs which to associate with this work item.  

  relatedItems 
  Optional  

Array of related items with the following schema:  
{  
    "itemId": ObjectId(),  
    "modelName": enum("MBEWorkItem", "MBEConversation")  
}  

 

Example request: 
{  
  "title": "Sample work-item title",  
  "description": "sample description",  
  "type": "task",  
  "state": "proposed",  
  "author": "612d6178637aa6009400e8ec",  
  "priority": "low",  
  "dueDate": "2024-06-11T22:12:55.983Z",  
  "activity": "612d6178637aa600ed979400", 
  "assignee": { 
    "item": "612d6178637aa6009400ed97", 
    "modelName": "MBEUser" 
  }, 
  "contents": ["612d6178637aa6009400def0", "612d6178637aa6009400abcd"],  
  "relatedItems": [  
    {  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   19 | P a g e  

      "itemId": "612d6178637aa6009400feda",  
      "modelName": "MBEWorkItem"  
    }  
  ]  
}  

 

 If the API call is successful, it will return a status code 200 with the work-item id in the response body.  

Response:   

Property  Property Description  

workItemId  work item unique identifier  

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error 

PUT /api/work-items/{workItemId} 

The request to update a work item is the same as creating a work item. Response will include the work 
item object. 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (work item not found) 

500 Internal Server Error 

 

 

GET A WORK ITEM 

GET /api/work-items/{workItemId} 

Retrieves the work item information. “WorkItemId” in the URL is the unique identifier of the work item 
for which properties need to be retrieved. The user who invokes this API should have the “VIEW-SEARCH-
WORK-ITEM” role permission or have “VIEW-WORK-ITEM” and be a member of the activity associated 
with the work item. 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   20 | P a g e  

 

Response:  

Property  Property Description  

  title work item title  
  description work item description  
  type enum: task, issue, review  
  state enum: proposed, in-progress, resolved, completed, removed  

  priority enum: low, medium, high   
  dueDate date the item is due – serialized in ISO-8601 format  
  activity ID of the Activity associated with this work item. Once an activity has 

been assigned, it cannot be reassigned or removed.   
  assignee The User or Group to which this work item is assigned. 
  comments All comments that have been added to the work item. 
  contents Array of content IDs which to associate with this work item.  

  relatedItems Array of related items. 
  createdBy The User that created the work item.  

 

Example response: 
{  
  "title": "Sample work-item title",  
  "description": "sample description",  
  "type": "task",  
  "state": "proposed",  
  "author": "612d6178637aa6009400e8ec",  
  "priority": "low",  
  "dueDate": "2024-06-11T22:12:55.983Z",  
  "activity": "612d6178637aa600ed979400", 
  "assignee": { 
    "item": { … }, 
    "modelName": "MBEUser" 
  }, 
  "contents": ["612d6178637aa6009400def0", "612d6178637aa6009400abcd"],  
  "relatedItems": [  
    {  
      "itemId": "612d6178637aa6009400feda",  
      "modelName": "MBEWorkItem"  
    } 
  ], 
  "createdBy": { … } 
}  

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (work item not found) 

500 Internal Server Error 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   21 | P a g e  

 

 

 

SEARCH SERVICES 
 
By default, contents, activities, work instructions and users can be searched by its name or title. A user 
with the Admin role (“ADMINISTER-PREFERENCES” role permission) can configure the searchable item 
properties in System Preferences. Searchable properties can include the description (content, work 
instruction and activity), email and userid (users), or all the string metadata properties specified in custom 
schema being used for content item or work instruction metadata. The Admin can also specify search 
policies requiring a minimum number of characters for keyword search. 

All queries should be URL Encoded so they are parsed correctly by the server.  This can be 
programmatically by using the encodeURIComponent() JavaScript function.  In the examples below 
everything is in plain text for readability. 

`/api/search/<type>?query=${encodeURIComponent('"blue pump"')}` 

 

A search query can be constructed to lookup general keyword and specific starts with phrases.  All 
keywords are implicitly search OR.  For example, a search query of <blue pump> will search any indexed 
searched properties that contain “blue” or “pump”.  To augment this behavior you can include AND, OR, 
and parentheticals () that support basic logic and order of operations.  To search for full phrases, you can 
wrap terms in quotes.  A search for <”blue pump”> would search for index field that starts with the 
phrase “blue pump”. 

blue pump 
"blue pump" 
"blue pump" AND red 
"blue pump" AND (red OR yellow) 

 

Column names can be specified by using brackets. To search for only the name of a document the query 
would be <[name] = “blue pump”>  A term should be surrounded by quotes in order to be included in the 
column search.  Without quotes around “blue pump” it would query for where name equals blue or any 
keyword that matches pump. 

[name] = "blue pump" 
[description] = "high pressure" 

 

Furthermore, a user can define wildcards to search for partial keywords.  A * operator means 0 or more 
characters and a ? operator means any character, but exactly 1 .  For example, a search term of <[name] = 
blue*> will return results of any documents with names that start with the word blue 

[name] = "blue pump" 
[description] = "high pressure" 

 

Custom sorting is supported, by default all search results show the most recently added items at the top.  
To change the order of the results you can specify <SORTASC [fieldName]> or <SORTDSC [fieldName]> to 
the end of any query. 

 

[DocID] = 0013335B-* AND [Description] = "0013335B-12 ABC" SORTASC [name] 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   22 | P a g e  

 

For optional performance all search api’s use cursor-based pagination to every api result will have the 
following data structure: 

{ 
  "prevPage": "/api/search/<type>?query=&pageSize=10&after=<id>", 
  "nextPage": "api/search/<type>?query=&pageSize=10&before=<id>", 
  "results": […] 
] 

 

Characters used to define query parameters such as brackets, quotes, or parentheticals will be parsed as 
query syntax. To search for items with those special characters directly in the name insert a backslash 
before the character to treat it as plain text.  For example, if document title contains the word “blue” 
(with quotes around it) you would need to search for the following to match the keyword. 

 

\"BLUE\" 

 

The pageSize query parameter can be changed to include the number of results returned.  By default, or if 
not specified it will be 10.  The after and before parameters will automatically be calculated.  To go to the 
next or previous page fetch the URLs provided. If the prevPage or nextPage properties are empty strings, 
it indicates that there are no results to display in that page. 

 

CONTENT ITEM 

GET /api/search/contents?query={query} 

The search keyword should be specified using the “query” query parameter as shown above. The user 
who is invoking this API should have the “VIEW-SEARCH-CONTENTITEM” role permission. 

When a user performs a search, only content items that the user has access to are returned. Content item 
search can support external content access checks as well, where an external web service will be invoked 
to check users’ content access before the content items are returned in the search results. 

If the API call is successful, it will return with a status code 200 with an array of content item objects that 
match the keyword in the “results” property of the response body. Below properties are included for each 
content item object. 

Property Property Description 

name content name 

description content description 

archived true if content is archived, otherwise false 

creationdate creation timestamp 

lastmoddate last modification timestamp 

lastmodifiedby user id of the user who last modified the 
content 

properties properties defined by custom schema 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   23 | P a g e  

_id content id 

 
Example response: 

{ 
  "prevPage": "/api/search/contents?query=&pageSize=10&after=645a82763280e4b67ca0e3ca", 
  "nextPage": "api/search/contents?query=&pageSize=10&before=645a82763280e4b67ca0e3ca", 
  "results": [{ 
    "name": "sample name", 
    "description": "sample description", 
    "archived": true, 
    "creationdate": "2021-04-08T16:37:31.192Z", 
    "lastmoddate": "2021-04-08T16:37:31.192Z", 
    "lastmodifiedby": "jdoe", 
    "properties": { 
      "revision": "A", 
      "version": 1.0 
    }, 
    "_id": "606f314b0e3b949ecb58bde2" 
  }] 
] 

 
Response Status Codes: 

200 Success 

400 Bad Request (validation failed) 

401 Unauthorized (authorization failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error 

 

ACTIVITY 

GET /api/search/activities?query={query} 

The search keyword should be specified using the “query” query parameter as shown above. The user 
who is invoking this API should have the “VIEW-SEARCH-ACTIVITY” role permission. 

If the API call is successful, it will return with a status code 200 with an array of activity objects that match 
the keyword in the “results” property of the response body. Below properties are included for each 
activity object. 

 

Property Property Description 

title activity title 

description activity description 

owners array of user objects who are activity owners 

owners.name owner name 

owners.userid owner user login 

owners._id owner user id 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   24 | P a g e  

lists array of activity list objects to be included in 
the activity 

lists.title list title 

lists._id list id 

users array of user objects to be included in the 
activity 

users.name user name 

users.userid user login 

users._id user id 

contents array of contents (ids) to be included in the 
activity  

startdate activity start date 

enddate activity end date 

_id activity id 

 
Example response: 

{ 
  "prevPage": 
"/api/search/activities?query=&pageSize=10&after=645a82763280e4b67ca0e3ca", 
  "nextPage": 
"api/search/activities?query=&pageSize=10&before=645a82763280e4b67ca0e3ca", 
  "results": [{ 
    "title": "sample title", 
    "description": "sample description", 
    "owners": [{ 
      "_id": "78666ac968841279e86c91df", 
      "name": "john doe", 
      "userid": "jdoe" 
    }], 
    "lists": [{ 
      "_id": "56432ac968841279e86261de", 
      "title": "engineering", 
    }], 
    "users": [{ 
      "_id": "61e994daa70a384f84478b8f", 
      "name": "Samwise Gamgee", 
      "userid": "gardener" 
    },{ 
      "_id": "6160818266450927daa1504f", 
      "name": "Frodo Baggins", 
      "userid": "ringbearer" 
    }], 
    "contents": ["67866ac968841279e86cdf91"], 
    "startdate": "2021-04-08T16:37:31.192Z", 
    "enddate": "2021-05-08T16:37:31.192Z", 
    "_id": "606f314b0e3b949ecb58bde2" 
  }, { 
    … 
  }] 
} 

 
 
Response Status Codes: 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   25 | P a g e  

200 Success 

400 Bad Request (validation failed) 

401 Unauthorized (authentication failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error 

 

WORK INSTRUCTION 

GET /api/search/workinstructions?query={query} 

The search keyword should be specified using the “query” query parameter as shown above. The user 
who is invoking this API should have the “VIEW-SEARCH-WORKINSTRUCTION” role permission. 

When a user performs a search, all work instructions that matches the search keywords are returned. 
Work instruction search can support external access checks as well, where an external web service will be 
invoked to check users’ work instruction access before the work instructions are returned in the search 
results. 

If the API call is successful, it will return with a status code 200 with an array of work instruction objects 
that match the keyword in the “results” property of the response body. Below properties are included for 
each work instruction object. 

Property Property Description 

title work instruction title 

description work instruction description 

owners array of user ids 

properties properties defined by custom schema 

_id work instruction id 

 
 
Example response: 

{ 
  "prevPage": 
"/api/search/workinstructions?query=&pageSize=10&after=645a82763280e4b67ca0e3ca", 
  "nextPage": 
"api/search/workinstructions?query=&pageSize=10&before=645a82763280e4b67ca0e3ca", 
  "results": [{ 
    "title": "sample title", 
    "description": "sample description", 
    "owners": [“6193e8454ae163efb2259a02”, ...], 
    "properties": { 
      "revision": "A", 
      "version": 1.0 
    }, 
    "_id": "606f314b0e3b949eaf58bd12" 
  }, { 
    … 
  }] 
} 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   26 | P a g e  

Response Status Codes: 

200 Success 

400 Bad Request (validation failed) 

401 Unauthorized (authorization failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error 

USERS 

GET /api/search/users?query={query} 

The search keyword should be specified using the “query” query parameter as shown above. The user 
who is invoking this API should have the “VIEW-SEARCH-USER” role permission. 

In addition to the general search policies listed above, an Admin user can also confine users to searching 
for users within their organization and selected additional organizations. 

If the API call is successful, it will return with a status code 200 with an array of user objects that matches 
the keyword in the “results” property of the response body. Below properties are included for each user 
object. 

 

Property Property Description 

userid user login 

email user email address, used for notifications 

sso if true, user is an external user and 
authenticates through external methods 

name user’s name 

title user’s title 

department user’s department 

organization array of user’s organization(s) 

roles User roles (ids) 

site user’s site 

active if false, the user cannot log into the system 

 
 
 
Example response: 

{ 
  "prevPage": "/api/search/users?query=&pageSize=10&after=645a82763280e4b67ca0e3ca", 
  "nextPage": "api/search/users?query=&pageSize=10&before=645a82763280e4b67ca0e3ca", 
  "results": [{ 
    "userid": "jdoe", 
    "email": "john.doe@example.com", 
    "sso": false, 
    "name": "john doe", 
    "title": "Senior Manager", 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   27 | P a g e  

    "department": "Marketing", 
    "organization": ["Anark"], 
    "roles": ["606f314b0e3b949ecb58bdd4"], 
    "site": "North America", 
    "active": true, 
    "_id": "606f314b0e3b949ecb58bde2" 
  }, { 
    … 
  }] 
} 

 
Response Status Codes: 

200 Success 

400 Bad Request (validation failed) 

401 Unauthorized (authorization failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   28 | P a g e  

GROUPS 

GET /api/search/groups?query={query} 

The search keyword should be specified using the “query” query parameter as shown above. The user 
who is invoking this API should have the “VIEW-SEARCH-GROUP” role permission. 

If the API call is successful, it will return with a status code 200 with an array of group objects that 
matches the keyword in the “results” property of the response body. Below properties are included for 
each user object. 

 

Property Property Description 

name Group name 

description Group description 

roles Group roles (ids) 

 
 
 
Example response: 

{ 
  "prevPage": "", 
  "nextPage": "", 
  "results": [ 
    { 
      "name": "sample group", 
      "description": "", 
      "roles": [ 
        "65862c5d74516996234a4c68" 
      ], 
      "_id": "658ef2a1e59fa12e8c50bb0c" 
    }, { … } 
  ] 
} 

 
Response Status Codes: 

200 Success 

400 Bad Request (validation failed) 

401 Unauthorized (authorization failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   29 | P a g e  

GET TENANT PREFERENCES 
 

Both GET tenant preference(s) APIs have the same authorization checks. The user who is invoking either 
API should have one of the following role permissions: “VIEW-CONTENTITEM”, “ADMINISTER-
PREFERENCES”, “VIEW-SEARCH-CONTENTITEM”, “VIEW-SEARCH-USER”, “VIEW -SEARCH-ACTIVITYLIST”, 
“VIEW-SEARCH-ACTIVITY”, “VIEW-SEARCH-GROUP” 

GET /api/tenantpreferences 

 
Response will be key value pairs for each tenant preference in the database. For example: 

{ 
"contentpropsschema": [ 
    { 
      "displayname": "Revision", 
      "propertyname": "revision", 
      "propertytype": "integer", 
      "isrequired": false 
    } 
  ], 
  "contentpropstoshowinui": [ 
    { 
      "metadatatoshow": [ 
        "description" 
      ], 
      "showkey": false 
    } 
  ], 
  "searchitemsmaxcount": 0, 
  …, 
} 
 

Response Status Codes: 

200 Success 

401 Unauthorized (authorization failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error 

GET /api/tenantpreferences/{prefKey} 

 
Response will be a key value pair, with key set to “value” and the preference value will be the value. For 
example, if you call /api/tenantpreferences/searchitemsmaxcount, response will be {“value”: 1}. 

Response Status Codes: 

200 Success 

401 Unauthorized (authorization failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   30 | P a g e  

ACTIVITIES 
 

CREATE AN ACTIVITY 

POST /api/activities 

Creates an activity with users and contents. The user who is invoking this API should have the “CREATE-
UPDATE-DELETE-ACTIVITY” role permission. 

 

Request:  

Property Property Description 

title activity title 

description 
Optional 

activity description 

owners users (ids) who will be owners of the activity 

lists 
Optional 

Groups (ids) that will participate in the activity 

users 
Optional 

Users (ids) that will participate in the activity 

contents 
Optional 

array of content items (ids) 

startdate 
Optional 

activity start date 

enddate 
Optional 

activity end date 

state 
Optional 

activity state one of ['Open', 'In Review', 'In 
Progress', 'Closed'] 

 

Example request: 
{ 
  "title": "sample title", 
  "description": "sample description", 
  "owners": ["78666ac968841279e86c91df"], 
  "lists": ["56432ac968841279e86261de"], 
  "users": ["61e994daa70a384f84478b8f", "6160818266450927daa1504f"], 
  "contents": ["67866ac968841279e86cdf91"], 
  "startdate": "2021-04-08T16:37:31.192Z", 
  "enddate": "2021-05-08T16:37:31.192Z", 
  "state": "Open" 
} 

 

If the API call is successful, it will return a status code 200 with the response body: 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   31 | P a g e  

Property Property Description 

activityId Activity id 

rootFolderId The root folder where Activity uploaded files 
and subfolders are stored in. 

 
Example response: 

{ 
  "activityId": "606f314b0e3b949ecb58bde2", 
  "rootFolderId": "606f314b0e3b949ecb69cef3" 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error 

 

UPDATE AN ACTIVITY 

PUT /api/activities/{activityId} 

Update an activity (users, groups, contents, start/end dates). “ActivityId” in the URL is the unique 
identifier of the activity which is being updated. The user who is invoking this API should have the 
“CREATE-UPDATE-DELETE-ACTIVITY” role permission or be the activity owner.  

 

Request is the same as creating an activity. 

 

Response Status Codes: 

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (activity not found) 

500 Internal Server Error 

 

DELETE AN ACTIVITY 

DELETE /api/activities/{activityId}  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   32 | P a g e  

Deletes the activity from database. “ActivityId” in the URL is the unique identifier of the activity which is 
being updated. The user who is invoking the API should have the “CREATE-UPDATE-DELETE-ACTIVITY” role 
permission or be the activity owner. 

If the API call is successful, it will return a status code 204. 

Response Status Codes:  

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (activity not found) 

500 Internal Server Error 

 

GET AN ACTIVITY 

GET /api/activities/{activityId}  

Retrieves the activity metadata properties. “ActivityId” in the URL is the unique identifier of the activity 
for which properties need to be retrieved. The user who invokes this API should have the “CREATE-
UPDATE-DELETE-ACTIVITY” role permission or the “VIEW-ACTIVITY” role permission.  

Response will have two properties, “activity” and “rootFolder”. The “activity” property will have the 
following information: 

Property Property Description 

title activity title 

description activity description 

owners array of user objects who are activity owners 

owners.name owner name 

owners.userid owner user login 

owners.email owner user email 

owners.title owner user title 

owners.department owner user department 

owners.organization owner user organization 

owners.sso is owner user an external user  

owners.active Is owner user an active user 

owners.preferences owner user’s preferences object 

owners._id owner user id 

lists array of activity list objects included in the activity 

lists.title list title 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   33 | P a g e  

lists._id list id 

users array of user objects included in the activity 

users.name user name 

users.userid user login 

users.email user email 

users.title user title 

users.department user department 

users.organization user organization 

users.sso is user an external user  

users.active Is user an active user 

users.preferences user’s preferences object 

users._id user id 

contents array of content item objects included in the activity - metadata is 
only returned for content items that user can access 

contents.name content name 

contents.archived if the content has been archived 

contents.description the content description 

contents.creationdate the creation date of that content 

contents.lastmoddate the last date the content was modified 

contents.lastmodifiedby the last user who modified the content 

contents.properties an object of key value pairs consistent with the custom properties 
schema defined for contents 

contents._id content id 

startdate activity start date 

enddate activity end date 

state activity state 

_id activity id 

 
Example response: 

{ 
  "activity": { 
    "_id": "612d6178637aa6009400e8ec", 
    "contents": [ 
      { 
        "_id": "612e5444637aa6009400e96f", 
        "archived": false, 
        "name": "ASM-RRC-001", 
        "creationdate": "2021-08-31T16:09:40.769Z", 
        "lastmoddate": "2021-08-31T17:11:24.996Z", 
        "lastmodifiedby": "sampleuser", 
        "properties": { 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   34 | P a g e  

          "version": "B", 
          "revision": "1.0" 
        }, 
        "description": "A description about a one of a kind Roof Rack" 
      }, 
      { 
        "_id": "612e550d637aa6009400ec46", 
        "archived": false, 
        "name": "Ion Drive", 
        "creationdate": "2021-08-31T16:13:01.795Z", 
        "lastmoddate": "2021-12-01T17:26:25.754Z", 
        "lastmodifiedby": "sampleuser", 
        "properties": { 
          "version": "A", 
          "revision": "1.0" 
        }, 
        "description": "MBE67400311-1" 
      } 
    ], 
    "description": "Review of samples", 
    "enddate": "2021-08-31T22:52:00.000Z", 
    "lists": [], 
    "owners": [ 
      { 
        "_id": "612d613d637aa6009400e559", 
        "sso": false, 
        "organization": "your company here", 
        "active": true, 
        "userid": "sampleuser", 
        "email": "su@anark.com", 
        "name": "sample user", 
        "title": "Mr.", 
        "department": "samplization", 
        "preferences": { 
          "notifications": true 
        } 
      } 
    ], 
    "startdate": "2021-08-30T22:52:59.000Z", 
    "state": "Open", 
    "title": "sample activity", 
    "users": [ 
      { 
        "_id": "6079e0cb64810f0055ca2b9a", 
        "sso": false, 
        "active": false, 
        "userid": "test user", 
        "email": "testuser@anark.com", 
        "name": "testuser", 
        "title": "Mr.", 
        "department": "Engineering", 
        "organization": "anark", 
        "preferences": { 
          "notifications": true 
        } 
      } 
    ] 
  }, 
  "rootFolder”: {  
    "_id": "645d2b081c0bcb4cb690b8dd", 
    ... 
  } 
} 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   35 | P a g e  

 
 
Response Status Codes: 

200 Success 

400 Bad Request (validation failed) 

401 Unauthorized (authentication failed) 

403 Forbidden (role permission check failed) 

500 Internal Server Error 

 

GENERATE AN ACTIVITY REPORT 

POST /api/activities/{activityId}/report 

Initiates generating an activity report. The user who is invoking this API should have the “VIEW-ACTIVITY” 
role permission. 

 

Request:  

Property Property Description 

conversationIds 
Optional 

The ids of conversations to include in the 
report. 

 

Example request: 
{ 
  "conversationIds": ["61e994daa70a384f84478b8f", "6160818266450927daa1504f"] 
} 

 

If the API call is successful, it will return a status code 200 with the job id in the response body. Jobs 
service status API should be used to poll periodically to get the status of the job. 

 

Property Property Description 

jobId Job id (used for status updates) 

 
Example response: 

{ 
  "jobId": "xctyuiHJ" 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   36 | P a g e  

403 Forbidden (role permission check failed)  

404 Not Found (activity not found) 

500 Internal Server Error 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   37 | P a g e  

USER MANAGEMENT 
 

ADD A USER 

POST /api/users 

Creates a user in the system. The user who invokes this API should have the “CREATE-UPDATE-DELETE-
USER” role permission. 

 

Request: 

Property Property Description 

userid User login 

email User email address, used for notifications 

password 
Optional 

User password (required if sso is not specified) 

sso 
Optional 

If true, user is an external user and 
authenticates through external methods 
(required if password is not specified) 

name User’s name 

title 
Optional 

User’s title 

department 
Optional 

User’s department 

organization 
Optional 

Array of user’s organization(s) 

roles Roles (ids) the user needs for application 
permissions and access classifiers.  

site 
Optional 

User’s site 

customprops 

Optional 

An array of custom properties saved as key-
value pairs. 

 
Example request: 

{ 
  "userid": "jdoe", 
  "email": "john.doe@example.com", 
  "sso": false, 
  "name": "john doe", 
  "title": "Senior Manager", 
  "department": "Marketing", 
  "organization": ["Anark"], 
  "roles": ["612d613d637aa6009400e789", “6144d9ba38b7140058b0d7ac”], 
  "site": "North America", 
  "customprops": [{ key: "anarkid", value: "example.user" }], 
} 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   38 | P a g e  

If the API call is successful, it will return a status code 200 with the user id in the response body.  

Property Property Description 

userId user’s unique identifier 

 

Example response: 
{ 
  "userId": "60566ac968841279e86c9130" 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

500 Internal Server Error 

UPDATE A USER 

PUT /api/users/{userId} 

Updates a user in the system. “UserId” is the unique identifier of the user being updated. The user who 
invokes this API should have the “CREATE-UPDATE-DELETE-USER” role permission. 

 

Request is the same as when creating a user. 

 

Response Status Codes: 

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (user not found) 

500 Internal Server Error 

 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   39 | P a g e  

DELETE A USER 

DELETE /api/users/{userId} 

Deletes a user in the system. “UserId” is the unique identifier of the user being updated. The user who 
invokes this API should have the “CREATE-UPDATE-DELETE-USER” role permission. 

 

Response Status Codes: 

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (user not found) 

500 Internal Server Error 

 

GET A USER 

GET /api/users/{userId} 

Retrieves the user information. “UserId” in the URL is the unique identifier of the user for which 
properties need to be retrieved. The user who invokes this API should have the “CREATE-UPDATE-DELETE-
USER” role permission or the “VIEW-ACTIVITY” role permission. 

 

Response:  

Property Property Description 

userid User login 

email User email address, used for notifications 

sso If true, user is an external user and 
authenticates through external methods  

name User’s name 

title User’s title 

department User’s department 

organization Array of user’s organization(s) 

roles User roles (ids) 

site User’s site 

active If false, the user cannot log into the system 

lastlogin The corresponding timestamp when the user 
last logged in 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   40 | P a g e  

preferences User’s preferences object 

customprops An array of custom properties 

profilePicture User’s profile picture if present or null 

 

Example response: 
{ 
  "userid": "jdoe", 
  "email": "john.doe@example.com", 
  "sso": false, 
  "name": "john doe", 
  "title": "Senior Manager", 
  "department": "Marketing", 
  "organization": ["Anark"], 
  "roles": ["612d613d637aa6009400e789", “6144d9ba38b7140058b0d7ac”], 
  "site": "North America", 
  "active": true, 
  "lastlogin": "2021-08-31T16:13:01.795Z", 
  "preferences": { 
    "notifications": true 
  }, 
  "customprops": [{ key: "anarkid", value: "example.user" }], 
  "profilePicture": {  
    "cropped": {  
      "data": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAMAAADDpi…", 
    "contentType": "image/png", 
    } 
  }, 
  "_id": "606f314b0e3b949ecb58bde2" 
} 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

403 Forbidden (role permission check failed)  

404 Not Found (user not found) 

500 Internal Server Error 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   41 | P a g e  

AUTHENTICATION 
 

LOGIN 

POST /api/auth/login 

Logs a user into the system and creates an active session.  

 

Request: 

Property Property Description 

login user’s login (base64 encoded) 

password user’s password (base64 encoded) 

 
Example request: 

{ 
  "login": "amRvZQ==", 
  "password": "YmFKcGFzc3dvcmQ=", 
} 

 

A successful login will return a cookie and status code 200. 

 

Response Status Codes: 

200 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  

500 Internal Server Error 

 

LOGOUT 

POST /api/auth/logout 

Logs a user out of the system and deletes the active session. 

Request is an empty body with the cookie obtained at login, specified in the request header. For example: 

headers: { 
  “cookie”: “mbewebsid=……” 
} 

 

Response Status Codes: 

200 Success 

401 Unauthorized (authentication failed)  

500 Internal Server Error 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   42 | P a g e  

GET AUTHENTICATED USER 

GET /api/auth/user 

Gets the logged in user information from the active session. 

 

Response: 

Property Property Description 

userid user login 

sso if true, user is an external user and 
authenticates through external methods  

name user’s name 

roles Array of roles assigned to the user 

_id user’s unique identifier (returned as 
userId in POST /api/users) 

canCreateActivity true if the user has permission to create 
an activity 

canCreateConv true if the user has permission to create a 
conversation 

canCreateComment true if the user has permission to create a 
comment 

canCreateContent true if the user has permission to create, 
edit, and delete a content item 

canCreateWI true if the user has permission to create a 
work instruction 

canCreateGroup true if the user has permission to create a 
group 

canManageGroup true if the user has permission to edit or 
delete a group 

canManageActivity true if the user has permission to edit or 
delete an activity 

canManageWI true if the user has permission to edit or 
delete a work instruction 

canCreateActivityList true if the user has permission to create 
an activity group of users 

canManageActivityList true if the user has permission to edit or 
delete a work instruction 

canManageUser true if the user has permission to edit or 
delete users 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   43 | P a g e  

canPublish true if the user has permission to publish 
content items, upload files, and upload 
templates 

canViewContent true if the user has permission to view 
content (separate from content access 
control) 

canViewFeed true if the user has permission to view 
feed 

canViewWI true if the user has permission to view 
work instructions 

canSearchContent true if the user has permission to search 
content items 

canSearchActivityList true if the user has permission to search 
activity groups 

canSearchUser true if the user has permission to search 
users 

canSearchActivity true if the user has permission to search 
activities 

canSearchGroup true if the user has permission to search 
groups 

canSearchWI true if the user has permission to search 
work instructions 

canExecuteWI true if the user has permission to execute 
a work instruction 

canQueryWIExecution true if the user has permission to 
generate execution reports 

canManagePreferences true if the user has permission to edit 
tenant preferences 

canPublishUserFile true if the user has permission to upload 
to My Files 

canPublishActivityFile true if the user has permission to upload 
to an activity 

sessionInfo Object containing headers stored in guest 
user’s session that are custom (not 
standard user metadata properties). Only 
returned if Admin configured “Guest User 
Configuration” in System Preferences. 

 

Example response: 
{ 
  "userid": "jdoe", 
  "name": "john doe", 
  "sso": false, 
  "roles": ["activityauthor","contentauthor","viewer"], 
  "canCreateActivity": true, 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   44 | P a g e  

  "canCreateConv": true, 
  "canCreateComment": true, 
  "canManageActivity": true, 
  "canCreateActivityList": true, 
  "canManageUser": false, 
  "canManageGroup": false, 
  "canPublish": true, 
  "canViewContent": true, 
  "canViewFeed": true, 
  "canSearchContent": true, 
  "canSearchUser": true, 
  "canSearchActivityList": true, 
  "canSearchActivity": true, 
  "canSearchGroup": false, 
  "canManagePreferences": false, 
  “canCreateContent”: true, 
  “canCreateWI”: false, 
  “canManageWI”: false, 
  “canSearchWI”: false, 
  "canExecuteWI”: false, 
  “canQueryWIExecution”: false, 
  “canPublishUserFile”: true, 
  “canPublishActivityFile”: true, 
  "_id": "5d83a7f9558e9f0029543514" 
} 

 

Response Status Codes: 

200 Success 

401 Unauthorized (authentication failed)  

500 Internal Server Error  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   45 | P a g e  

INTEGRATION API HOOKS 
 
Anark Collaborate can support external authentication and access control checks for content items and 
search results. Also, custom REST API’s can be added, for example, an API can be added to synchronize 
users from an external system. All these extensions are possible using the integration API hooks, stub 
implementation of these API’s is in a file “integrationapi.js” in the “sdk” sub directory under Anark 
Collaborate installation folder. Node.js/Express and JavaScript knowledge is required to develop 
integrations.  

 

INITIALIZE 
 

The initialization hook init performs any additional initialization required to run the integration code. It 
gets two arguments: 

• app: is the Anark Collaborate Express application instance 
• config: an object that contains the env settings and tenant preferences 

 

You can use the “app” object to mount any required Express middleware, for example, to use custom 
REST API. If the integration requires new env settings that needs to be configured, use the config object to 
add new env settings that were specified in the PM2.json file. 

Ex. 

  init(app, config) { 
    app.use('/api/supplier', supplierApi); 
    config.showcontentlandingpage = process.env.SHOWCONTENTLANDINGPAGE; 
  } 

 

AUTHENTICATE AN EXTERNAL USER 
 
Out of the box, Anark Collaborate supports local authentication. It can be customized and configured to 
be integrated with the single sign-on solution that is deployed in the enterprise (SAML 2.0, OpenID 
Connect) or perform authentication against LDAP server or other systems if required. Anark Collaborate 
platform uses Passport.js framework for authentication. Passport strategies are available to support 
numerous authentication mechanisms, integration can use one of them to support the authentication 
provider used in the enterprise. 

The authenticateUser hook is used to authenticate an external user, it will be invoked if 
“AUTHEXTERNALSTRATEGY” env setting is specified. Implement the authentication functionality inside 
this hook. It gets Express request object, response object and the next callback arguments. This method 
will be invoked as an Express middleware and should invoke next() or next(error) after authentication, to 
return the status.  

Ex. 

  authenticateUser(req, res, next) { 
    return ssoAuth(req, res, next); 
  } 

In the above example, “ssoAuth” is implemented in the integration code that will use Passport module to 
authenticate the external user. 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   46 | P a g e  

 

EXTERNAL USER LOG OUT 
 

The logOutUser hook is used to log out the external user. Implement any required functionality that is 
needed when the user logs out inside this hook. It gets Express request and response object and the 
session object as arguments. Session object will contain all the variables stored in user’s session. 

Ex.  

  logOutUser(req, res, session) { 
    return ssoLogout(req, res, session); 
  } 

In the above example, “ssoLogout” is implemented in the integration code, for example, it can support an 
external web page to be displayed when the user logs out. 

 

EXTERNAL CONTENT ITEM ACCESS CHECK 
 

Content access in Anark Collaborate can be managed by an external system, for example, PLM. This is 
useful when content access needs to be enforced based on the access control rules specified in an 
external system. External content access check is enabled by a tenant preference setting, “Access Control 
Web Service URL” which can be specified in System Preferences by an admin. Setting takes a web service 
URL that will be invoked by Anark Collaborate to check whether the user has access to the content before 
any user can view or collaborate with a specific content. Based on the response of the external system 
web service, a user will be granted or denied content access. 

The checkContentAccess hook should be used to implement the web service invocation for checking 
content access for a specific user. It gets content item identifier, user metadata object and session as 
input arguments.  Content item identifier can be used to get additional content item metadata. User 
metadata object will contain the user properties. Session object will contain all the variables stored in 
user’s session. Implementation should return a Promise, if there are no errors, resolved promise should 
have value true if the user has access, otherwise false. 

Ex.  

checkContentAccess (contentId, user, session) { 
  // Invoke external web service for access check 
} 

HANDLE EXPIRED SESSION 
 

Session timeout can be specified in Anark Collaborate, handleSessionExpiry hook will be invoked when 
the session expires. User session is passed as an input argument, session object can be retrieved as shown 
in the example below. Implement any required functionality that needs to happen on session expiry, and 
it should return a Promise. 

Ex. 

handleSessionExpiry(session) { 
  const sessionObj = JSON.parse(session.session); 
  // Implement any needed logic 
} 

  



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   47 | P a g e  

EXTERNAL ACCESS CHECK FOR SEARCH 
 

Content item search can support external access checks. When a user performs a search, only content 
items that they have access is shown in the search results by invoking the external web service. External 
access check is enabled by a tenant preference setting, “Search Content Access Web Service URL” which 
can be specified in System Preferences (Search tab) by an admin. 

The checkSearchItemsAccess hook should be used to implement the web service invocation to check 
whether the user has access to search result content items. The first argument itemType will be 
“content”. The second argument items will be an array of content items with metadata and properties 
that matched the search keyword, for which access checks should be performed on. User metadata object 
will contain the user properties. Session object will contain all the variables stored in user’s session. 
Implementation should return a promise, if there are no errors, promise should be resolved with an 
object with key value pairs, where key is the content item identifier (_id property) for each of the content 
items passed into this hook and the value should be set to the access check result for that content item 
(true or false). 

Ex.  

checkSearchItemsAccess(itemType, items, user, session) { 
  // Invoke external web service for access check 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   48 | P a g e  

CONTENT LINKING AND EMBEDDING  
 

Anark Collaborate supports URL linking which allows external applications to load content item URLs with 
optional parameters targeting specified components in the content item. This is useful for indexing 
specific content item components with custom commands, for example to highlight a 3D part in an 
assembly that matches a part number or showing a particular document component and scrolling to a 
designated page number. Customers using custom code widgets in their template can specify what 
commands are available and what those command do when executed. More information can be found in 
the Template API documentation. Anark Collaborate also supports embedding content from external 
systems. By embedding the View app in an iframe, customers can issue custom commands through 
JavaScript’s Post Message. Note: content linking and content embedding are only supported when 
viewing content through the “view” app as such: 

https://<your.company.com>/view/<the_content_id>/ 

 

LINKING SYNTAX 
To issue a command through URL linking, the URL must be formatted as above with additional trailing 
query parameters. Three parameters are supported,  

• Command - the action to be executed. 
• Message - details and supporting information for the action to execute correctly. 

o Users can specify multiple messages as key-value pairs. Keys and values are defined as 
<key>~<value>. 

o Multiple pairs can be separated with a comma. 
• componentId - (Optional) the component identifier to load. 

For example, if your template supports the command selectBalloon, then the URL 

https://<your.company.com>/view/1e165dfde2/?command=selectBalloon&message=text~3a,view~front
&componentId=8742 

will tell Anark Collaborate to load content with id “1e165dfde2”, load component with id “8742”, and 
select the inspection balloon in the view “front” with text “3a”. 

 

EMBEDDED SYNTAX 
To issue a command for an embedded content, the following syntax must be followed. 

• Command - the action to be executed. 
• Message - details and supporting information for the action to execute correctly. Multiple 

messages are formatted as an object. 
• componentId - (Optional) the component identifier to load 

For example, if your template supports the command selectBalloon, from an external system the 
following JavaScript Post Message will load content with id “1e165dfde2”, load component with id 
“8742”, and select the inspection balloon in the view “front” with text “3a”. 

window.postMessage({ 
    command: "selectBalloon", 
    message: { 
      text: "3a", 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   49 | P a g e  

      view: "front", 
    }, 
    componentId: "8742" 
}, "*"); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   50 | P a g e  

PUBLISHING A DATA COMPONENT 
 

Anark Collaborate supports a “data” component in a content item, which allows users to publish data (Ex. 
PLM object metadata, BOM, change notice etc.) in JSON format. JSON data should adhere to the 
published schema that supports attribute (key/value pairs), attribute group (object with key/value pairs), 
URL object (link and display name property) and a table object (columns and rows of data). An attribute 
group or a table column supports a single URL or an array of URLs.  

Anark JSON schema for data publishing is defined using JSON Schema specification (https://json-
schema.org/), which is a widely adopted format for describing JSON data. Please refer to the provided 
schema definition file and sample data when building your own data components. 

In its most basic form, JSON data should consist of attributes (key-value pairs). The following is an 
example of a simple document with all the primitive data types supported. 

{ 
    "str": "foo", 
    "int": 1234, 
    "float": 35.4, 
    "bool": true, 
    "nil": null 
} 
 

Data documents may also include attribute group (nested object) with key-value pairs. 

{ 
    "str": "foo", 
    "nested": { 
        "str": "foo", 
        "int": 1234, 
        "float": 35.4, 
        "bool": true, 
        "nil": null 
    } 
} 
 

Arrays and deeply nested objects are currently not supported. The following examples are invalid. 

{ 
    "arrays": ["are", "not", "supported"], 
    "deeply": { 
        "nested": { 
            "objects": { 
                "are": { 
                    "not": "supported" 
                } 
            } 
        } 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   51 | P a g e  

    } 
} 
 

STRUCTURED DATA 
Data components allow for a growing list of formal data structures for describing different types of 
information. These data formats have a special __TYPE__ property which is used to identify both the type 
and structure of the data. 

URL 

The URL data structure allows human readable text to be associated with a URL (href). This is useful for 
creating clickable text and hyperlinks. 

{ 
    "sampleUrl": { 
        "__TYPE__": "url", 
        "displayName": "Anark Corporation", 
        "href": "https://www.anark.com" 
    } 
} 
 

Table 

Tables allow for columns and rows of data. Column definitions are used to describe the number of 
columns and the type of data within each column. Each row should contain the data corresponding to the 
column definitions. 

{ 
    "sampleTable": { 
        "__TYPE__": "table", 
        "columns": [ 
            {"name": "Name", "type": "string"}, 
            {"name": "Age", "type": "number"}, 
            {"name": "Has pets", "type": "boolean"} 
        ], 
        "rows": [ 
            ["John Smith", 32, false], 
            ["Jane Doe", 27, true] 
        ] 
    } 
} 
 
 

 

 

 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   52 | P a g e  

 

Tables can also contain structured URLs. 

{ 
    "sampleTable": { 
        "__TYPE__": "table", 
        "columns": [ 
            {"name": "Website", "type": "url"} 
        ], 
        "rows": [ 
            [{  
                "__TYPE__": "url",  
                "displayName": "Anark Corporation",  
                "href": "https://www.anark.com" 
            }] 
        ] 
    } 
} 
 

A single column can also contain an array of URLs. 

{ 
    "sampleTable": { 
        "__TYPE__": "table", 
        "columns": [ 
            {"name": "External Links", "type": "array"} 
        ], 
        "rows": [ 
            [ 
                [ 
                    {"__TYPE__": "url", ...}, 
                    {"__TYPE__": "url", ...},          row 1 
                    {"__TYPE__": "url", ...}, 
                ] 
            ], 
            [ 
                [ 
                    {"__TYPE__": "url", ...}, 
                    {"__TYPE__": "url", ...},          row 2  
                ] 
            ] 
        ] 
    } 
} 
 



Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   53 | P a g e  

SCHEMA VALIDATION 
Please refer to https://json-schema.org/implementations.html#validators for information on the available 
validators in different languages to validate the JSON payload against a JSON schema definition. There are 
also online tools available, these tools make it easy to verify that your data is formatted correctly, we 
recommend using https://www.jsonschemavalidator.net. 

  

https://json-schema.org/implementations.html#validators
https://www.jsonschemavalidator.net/


Anark Collaborate API Reference   

Copyright © 2024 Anark Corporation   54 | P a g e  

MISCELLANEOUS 
 

Other APIs are as follows.  

LOG A MESSAGE 

POST /api/log 

Add a message to the message logs. 

Request: 

Property Property Description 

level Specifies the message severity level. 

Allowed values are info, warn, and error. 

message Specifies the message to add to logs. 

 
Example request: 

{ 
  "level": "info", 
  "message": "message", 
} 

 

Response Status Codes: 

204 Success 

400 Bad Request (validation failed)  

401 Unauthorized (authentication failed)  


	General Notes
	System Permissions

	Publishing a Content Item
	Create a Content Item
	POST /api/contents

	Add a Component to the Content Item
	POST /api/cicomponents

	Upload File and Publish
	POST /api/upload/file/{contentId}

	Get the Job Status
	GET /api/jobs/{jobId}/status

	Cleanup on Publish Errors
	DELETE /api/contents/{contentId}/publish

	View URL

	Content Management
	Delete a Content Item
	DELETE /api/contents/{contentId}

	Delete a Component
	DELETE /api/cicomponents/{cicomponentId}

	Get Components
	GET /api/cicomponents?content={contentId}

	Get Content Item Metadata
	GET /api/contents/{contentId}/properties
	GET /api/contents/{contentId}/properties/{propKey}

	Edit Content Item Metadata
	PUT /api/contents/{contentId}/properties
	PUT /api/contents/{contentId}/properties/{propKey}

	Archiving a Content Item
	PUT /api/contents/{contentId}/archived


	Downloading a Content Item
	Post the Download Request
	POST /api/contents/{contentId}/download

	Get the Job Status
	GET /api/jobs/{jobId}/status

	Trigger the Download of the File
	GET /api/download/file?jobid={jobId}


	Work Management
	Create or Update a Work Item
	POST /api/work-items
	PUT /api/work-items/{workItemId}

	Get a Work Item
	GET /api/work-items/{workItemId}


	Search Services
	Content Item
	GET /api/search/contents?query={query}

	Activity
	GET /api/search/activities?query={query}

	Work Instruction
	GET /api/search/workinstructions?query={query}

	Users
	GET /api/search/users?query={query}

	Groups
	GET /api/search/groups?query={query}


	Get Tenant Preferences
	GET /api/tenantpreferences
	GET /api/tenantpreferences/{prefKey}

	Activities
	Create an Activity
	POST /api/activities

	Update an Activity
	PUT /api/activities/{activityId}

	Delete an Activity
	DELETE /api/activities/{activityId}

	Get an Activity
	GET /api/activities/{activityId}

	Generate an Activity Report
	POST /api/activities/{activityId}/report


	User Management
	Add a User
	POST /api/users

	Update a User
	PUT /api/users/{userId}

	Delete a User
	DELETE /api/users/{userId}

	Get a User
	GET /api/users/{userId}


	Authentication
	Login
	POST /api/auth/login

	Logout
	POST /api/auth/logout

	Get Authenticated User
	GET /api/auth/user


	Integration API Hooks
	Initialize
	Authenticate an External User
	External User Log Out
	External Content Item Access Check
	Handle Expired Session
	External Access Check for Search

	Content Linking and Embedding
	Linking Syntax
	Embedded Syntax

	Publishing a Data Component
	Structured Data
	URL
	Table

	Schema Validation

	Miscellaneous
	Log a Message
	POST /api/log



